Мой комп - Железо. Windows. Интернет. Программы

Высокочастотная цилиндрическая антенна бокового излучения с круговым сканированием. Высокочастотная антенна Любительские антенны коротких и ультракоротких волн

Изобретение относится к области телекоммуникационных технологий, а более конкретно к конструкциям сканирующих высокочастотных антенн. Технический результат - расширение функциональных возможностей за счет обеспечения полного кругового сканирования. Для этого цилиндрическая сканирующая антенна бокового излучения содержит: цилиндрический волновод, образованный двумя (верхним и нижним) параллельными металлическими дисками; диэлектрический цилиндр, являющийся заполнением цилиндрического волновода и выполненный с возможностью функционирования как в качестве согласующего трансформатора между цилиндрическим волноводом и свободным пространством, так и в качестве диаграммообразующего элемента; прямоугольную решетку излучателей, ориентированных нормально плоскости самой решетки, помещенную осесимметрично в цилиндрический волновод, причем плоскость решетки расположена параллельно основанию цилиндрического волновода; два металлических цилиндра, расположенные соответственно над верхним и под нижним дисками и выполненные с возможностью функционирования в качестве вспомогательных цилиндрических излучателей, корректирующих диаграммы направленности в угломестной плоскости. 6 з.п.ф-лы, 10 ил.

Рисунки к патенту РФ 2510552

Изобретение относится к области телекоммуникационных технологий, а более конкретно к конструкциям сканирующих высокочастотных антенн.

Антенны со сканирующим в пространстве направленным лучом представляют особый тип антенн, использующихся в радарной технике и в средствах коммуникации. По способу сканирования делятся на антенны механического, электронного и смешанного типа. В настоящее время наиболее перспективными считаются антенны с электронным сканированием луча, имеющие явные преимущества по быстродействию, надежности. Электронное сканирование осуществляется планарными, линейными и конформными антенными решетками. Планарные и линейные решетки менее сложны конструктивно и технологически, однако у них имеется существенный недостаток, а именно они позволяют осуществлять сканирование лишь в ограниченных углах полусферы (планарные) или полуокружности (линейные). Чтобы обеспечить полное круговое сканирование, применяются конформные решетки, имеющие форму цилиндров или многогранников. Излучающие элементы в таких решетках размещены на боковой поверхности. Подобные решетки имеют значительные объемные размеры, а их пространственный монтаж отличается большой трудоемкостью. Круговое сканирование в них, как правило, осуществляется путем включения части всех элементов, что требует применения сложных коммутационных схем. Следует отметить, что существуют также низкопрофильные конформные решетки, построенные на основе плоской линзы Люнеберга, но и в этом случае, чтобы реализовать полное круговое сканирование, такие антенны должны иметь сложные схемы коммутации и запитки.

Известные типы антенных решеток, осуществляющих круговое сканирование луча, имеют такие недостатки, как трудоемкость изготовления, наличие сложных запитывающе-коммутационных цепей и частичное использование всех излучающих элементов.

Антенна, представленная в патенте США № 4143380 , осуществляет круговое сканирование луча путем переключения элементов, расположенных на боковой поверхности цилиндра. К недостаткам такой конструкции следует отнести трудность монтажа антенны, невозможность создания антенны, интегрированной с многоканальным приемо-передающим устройством. Наличие коаксиальных линий ограничивает применение данной антенны в миллиметровом диапазоне. К тому же антенна имеет значительную высоту, что делает невозможным ее применение в очень малых устройствах, таких как сотовые телефоны или планшетные компьютеры.

Антенная решетка с круговым обзором, предложенная в патенте США № 4414550 , имеет технологичную низкопрофильную конструкцию, позволяющую реализовывать печатную технологию. Однако для реализации сканирования она требует сложной схемы с высокочастотными фазовращателями. Кроме того, поскольку одновременно задействована только часть элементов решетки, снижается ее эффективность как целой единицы.

В патенте РФ № 2305879 описана сканирующая антенная решетка, содержащая излучающую структуру в виде двумерной решетки из отверстий в металлическом диске и источник плоского фронта волны в виде слоя диэлектрика на металлическом основании и возбудителя слоя диэлектрика, который выполнен в виде открытого конца плоского волновода с расширением верхней стенки рупорного типа. Данная конструкция позволяет изготавливать компактные сканирующие антенны, однако не позволяет добиться полноценного кругового сканирования.

Подобный же недостаток присущ и конструкции антенной решетки, описанной в патенте США № 3392394 . Эта конструкция представляет собой планарную линзу Люнеберга с системой облучателей, расположенных по боковой поверхности линзы, и относительно несложной схемой запитки. Однако ввиду того, что излучатели и цепи коммуникации вынесены за пределы линзы, вся конструкция имеет значительные размеры в плоскости линзы. Кроме того, если используется однослойная линза, то невозможно осуществить полное круговое сканирование из-за затенения противоположных излучателей. Чтобы избежать этого, в применена двухслойная линза, где внутренние и наружные излучатели разнесены по слоям и поэтому при сканировании не влияют друг на друга. Однако, это ведет к усложнению схемы запитки из-за наличия большого числа направленных ответвителей, кроме того, увеличивается толщина всей антенны, что также делает ее невозможной к применению в очень компактных устройствах.

Наиболее близкими к заявляемому изобретению признаками обладает техническое решение, раскрытое в патенте США № 6987493 и предназначенное для кругового сканирования. Предложенная в антенна состоит из вертикальных монополей, расположенных над проводящей плоскостью. Излучаемая центральным монополем изотропная волна приобретает направленность путем воздействия на нее пассивных монополей, расположенных осесимметрично. Фаза волны, переизлученной этими вибраторами, варьируется посредством перестраиваемых конденсаторов. К недостаткам такой антенны можно отнести необходимость использования перестраиваемых конденсаторов, что делает невозможным применение такой конструкции в миллиметровом диапазоне или же приведет к значительным потерям и слабовыраженной направленности. К тому же наличие только одного активного излучателя не позволяет использовать многоканальные приемные устройства с низкочастотным управлением фазой. Также из-за малого количества пассивных переизлучателей невозможно добиться большей направленности в плоскости Н.

Задача, на решение которой направлено заявляемое изобретение, состоит в том, чтобы разработать усовершенствованную конструкцию высокочастотной антенны с круговым сканированием, причем основными требованиями к такой антенне являются компактность и простота реализации.

Технический результат достигается за счет применения нового подхода к конструированию простой и компактной сканирующей антенны, которая включает в себя:

Цилиндрический волновод с диэлектрическим заполнением, образованный двумя параллельными металлическими дисками;

Прямоугольную решетку излучателей, ориентированных нормально плоскости самой решетки, помещенную осесимметрично в цилиндрический волновод, причем плоскость решетки расположена параллельно основанию цилиндрического волновода с расстоянием между элементами решетки в обоих направлениях, равным , где

F - длина волны в заполненном цилиндрическом волноводе;

Два металлических цилиндра с боковым пазом, расположенные соответственно над верхним и под нижним дисками и выполненные с возможностью функционирования в качестве вспомогательных цилиндрических излучателей, корректирующих диаграммы направленности в угломестной плоскости.

Отсутствие сложных цепей запитки с высокочастотными коммутаторами, а также возможность управления лучом на низкой частоте преобразования существенно упрощает процесс изготовления антенны. Компактность достигается за счет того, что диаграммообразующая решетка помещена внутрь цилиндрического волновода, который одновременно является корпусом антенны, в отличие от других типов цилиндрических решеток, где излучатели размещаются на наружной боковой стороне цилиндра. Кроме того, данная структура антенны, обеспечивающая хорошую согласованность с пространством, позволяет делать устройство низкопрофильным и привлекать высокопроизводительную технологию печатных антенн.

Ввиду того, что для управления лучом требуются значения фаз, кратные 90 градусам, допустимо осуществлять управление по низкой частоте, исключив использование сложных высокочастотных фазовращателей, имеющих значительные потери особенно в миллиметровом диапазоне. К тому же фазовый метод кругового сканирования делает антенну более эффективной, так как позволяет использовать все элементы одновременно. В других антеннах подобного типа круговое сканирование осуществляется путем переключения части элементов. Ввиду этого использование всех элементов одновременно невозможно в принципе, поэтому снижается эффективность их использования в многоканальных приемных устройствах.

Одна из конструктивных особенностей заявляемой конструкции заключается в применении двумерной прямоугольной решетки монопольных излучателей, расположенных нормально общей плоскости. Шаг решетки в обоих измерениях составляет четверть длины волны в цилиндрическом заполненном волноводе. Вся решетка помещена осесимметрично между двумя параллельными металлическими дисками, образующими цилиндрический волновод. Пространство между дисками заполнено диэлектриком, конструктивно выполненным в виде цилиндра, соосного с дисками, но с большим радиусом. На верхнем и нижнем диске также соосно установлены два металлических цилиндра, причем в боковой поверхности каждого цилиндра имеется концентрический паз.

При возбуждении всех излучателей с соответствующими фазами в пространстве между дисками распространяется неизотропная цилиндрическая волна, имеющая определенную направленность. При изменении фазовых соотношений направление вектора распространения меняется относительно центра волновода. Далее волна излучается в пространство боковой частью цилиндра. Поскольку решетка излучателей формирует волну с определенным фазовым фронтом и распространением, то диаграмма направленности будет иметь ширину в азимутальной плоскости, зависящую от количества излучателей, и положение, зависящее от фаз возбуждения. Таким образом, меняя фазовые соотношения между излучателями, можно осуществлять круговое сканирование. Для формирования диаграммы направленности в угломестной плоскости используются две дополнительные цилиндрические структуры, установленные на верхней и нижней сторонах основной антенны. Цилиндры являются пассивными переизлучателями, корректирующими фронт основной волны.

На чертежах:

Фиг.1 - общий вид высокочастотной цилиндрической антенны бокового излучения с круговым сканированием:

1 - проводящий диск;

2 - диэлектрический цилиндр;

3 - излучатель;

4 - выступающая часть диэлектрического цилиндра;

5 - верхний цилиндр;

6 - нижний цилиндр;

7 - кольцевой паз;

8 - микродиск.

Фиг.2 - структура полей, формируемых антенной.

Фиг.3 - образование направленной волны в цилиндрическом волноводе.

Фиг.4 - функциональное назначение цилиндров 5 и 6.

Фиг.5 - графики коэффициента отражения.

Фиг.6 - принцип образования направленной волны в цилиндрическом волноводе.

Фиг.7 - фазовое распределение для углов отклонения 90 и 45 градусов.

Фиг.8 - фазовые распределения для семейства углов сканирования от 11 до 78 градусов.

Фиг.9 - графики диаграмм направленности антенны.

Фиг.10 - вариант видоизмененной антенны и ее диаграммы направленности.

Основу антенны (см. Фиг.1) представляет открытый цилиндрический волновод, образованный двумя металлическими дисками 1, в котором диэлектрический цилиндр 2 является средой заполнения волновода. Часть диэлектрического цилиндра 2, выступающая за пределы волновода, является согласующим элементом между цилиндрической волной и волной свободного пространства. Одновременно она, как диэлектрическая волноведущая структура, формирует диаграмму направленности в угломестной плоскости. Каждый излучатель 3, расположенный в пространстве цилиндрического волновода, возбуждает цилиндрическую волну, изотропно расходящуюся от излучателя к краю цилиндра, и в случае использования одного излучателя будет излучаться выступающей частью диэлектрического цилиндра 4 в пространство (см. Фиг.2). Чтобы реализовать направленное излучение в азимутальной плоскости антенны, необходимо в цилиндрическом волноводе сформировать направленную волну.

В данной конструкции антенны особое значение имеет согласование элементов антенны. Хотя согласование одиночного излучателя 3 внутри цилиндрического волновода не вызывает проблем, излучатель в составе решетки имеет значительные потери на отражение вследствие очень близкого расположения элементов и, как результат, сильной взаимной связи. В результате воздействия этих перекрестных связей интегральный коэффициент отражения всей решетки может значительно возрасти, что приведет к большим потерям и искажениям диаграммы направленности.

Результирующий нормированный коэффициент отражения на i-ом элементе определяется как

где S jj - комплексный коэффициент взаимной связи между i-ым и j-ым элементом. При i=j коэффициент представляет собой значение собственного отражения i-го элемента.

Чтобы идеально согласовать каждый элемент, требуется выполнение условия:

Абсолютная величина взаимной связи в данной решетке очень значительна (для соседних элементов составляет -7 дБ). Вследствие этого для согласования элемента в окружении требуется вводить значительное его первоначальное рассогласование, хотя для некоторых элементов окружения выполняется условие S ij =-S ik и происходит их взаимная компенсация. Это происходит ввиду того, что пара равноудаленных элементов окружения имеет противоположное по фазе возбуждение (-90 и +90 градусов) и при наведении на расположенный между ними элемент их поля вычитаются.

Одним из методов добиться требуемого рассогласования является изменение входного импеданса излучателя 3 путем изменения электрической длины каждого излучателя.

Так, импеданс монопольного излучателя в первом приближении определяется как

где b=F(z)sin l-F(l)sin |z|+G(l)cos z-G(z)cos l

а - радиус излучателя, l - длина излучателя.

Меняя длину излучателя, можно в широких пределах менять характер и величину импеданса. Для лучшего согласования каждый излучатель снабжен металлическим микродиском 8, который увеличивает эффективную длину излучателя.

На Фиг.5 приведены значения коэффициента отражения для отдельного излучателя и интегрального коэффициента отражения всей решетки, который и определяет общие потери антенны на отражение:

где Si - комплексный коэффициент отражения i-го излучателя.

Для формирования направленной по оси X цилиндрической волны необходимо выполнение условия:

где ij - фаза возбуждения элемента i-го ряда j-й строки (см. Фиг.6, вид 6.1).

В этом случае волна, распространяясь от элемента, будет складываться в фазе с волной последующего элемента при условии, что расстояние между элементами равно четверти длины волны. Обратная же волна, складываясь с волной предыдущего элемента в противофазе, распространяться не будет, а будет отражаться обратно (см. Фиг.6, вид 6.2). Линии равных фаз в общем случае параллельны и расположены перпендикулярно вектору распространения (в данном случае параллельно оси Y).

Очевидно, что если линии равных фаз повернуть на 90 градусов относительно центра координат, то при расстоянии между излучателями 3, равном четверти длины волны, направление распространения тоже повернется на 90 градусов (см. Фиг.7, вид 7.1). Соответственно, фазы возбуждения должны иметь приращение -90 градусов в направлении распространения.

Также для того, чтобы направление распространения было повернуто на 45 градусов, линии равных фаз должны быть повернуты на 45 градусов (см. Фиг.7, вид 7.2). Однако в этом случае расстояние между соседними линиями равнофазного возбуждения будет равно и условия формирования направленной волны несколько нарушаются. Но если установить изначальное расстояние между элементами по оси X и Y, равное , то возможность направленного распространения будет сохраняться для любых направлений. Чтобы повернуть вектор распространения на углы, занимающие промежуточное значение, требуются комбинированные линии равных фаз, имеющие вид ломаной.

На Фиг.8 последовательно показаны линии фазового распределения для углов - 11; 22,5; 33; 56; 67; 78 градусов.

Данная система характеризуется тем, что значение фазы в любом случае кратно 90 градусам. Это позволяет осуществлять управление с помощью луча элементами низкочастотного тракта, не применяя высокочастотные фазовращатели, имеющие значительные потери и увеличивающие габариты антенны. Очевидно, что благодаря осевой симметрии всей антенны, можно осуществлять сканирование луча в пределах полной окружности.

На Фиг.9, вид 9.1, показаны диаграммы направленности антенны для некоторых углов сканирования. Можно видеть, что в плоскости азимута осуществляется достаточно равномерное перекрытие даже с шагом в 22.5 градуса. Добиться еще большей сглаженности можно используя шаг в 11 градусов.

Диаграммы направленности в угломестной плоскости показаны на Фиг.9, вид 9.2. Для углов ±45 от плоскости азимута обеспечивается уровень усиления не менее 6 дБ.

Данная структура антенны имеет симметричную диаграмму направленности в угломестной плоскости с максимумом в азимутальной плоскости. Иногда требуется получить диаграмму со смещенным максимумом излучения. Для этого можно боковой профиль антенны реконфигурировать, как показано на Фиг.10, вид 10.1. Из него видно, что нижняя сторона диэлектрического цилиндра полностью закрыта металлом.

Благодаря этому образуется волноводная структура в виде слоя диэлектрика над металлическим экраном. Антенны, построенные на таких структурах, имеют диаграммы направленности с лучом, отклоненным в сторону, противоположную экрану. На Фиг.10, вид 10.2, представлена диаграмма направленности, смещенная в угломестной плоскости.

Антенна имеет низкопрофильную структуру. Поэтому диэлектрический цилиндр 2 может быть выполнен на основе ламинированного диэлектрика. Верхний и нижний диски 1, образующие цилиндрический волновод, выполнены печатным способом. Излучатели 3 конструктивно представляют собой металлизированные отверстия, выполненные в диэлектрике. Реактивные элементы в виде микродисков 8 являются одновременно металлизированными площадками, необходимыми при металлизации отверстий. Таким образом, антенна в основном может быть изготовлена высокопроизводительным методом печатных технологий.

Верхний и нижний цилиндры 5 и 6 соединяются с дисками 1 преимущественно посредством пайки. Нижняя, компланарная, часть излучателей позволяет легко реализовать соединение с многоканальным приемо-передающим устройством, выполненным на отдельной микросхеме.

Данное изобретение может быть использовано в средствах коммуникации, где требуется осуществлять надежный прием с меняющегося направления и пространственное подавление интерферирующих направлений при малых размерах устройства. В частности, это могут быть устройства WiFi и WiGig коммуникации, устройства телевизионного приема для подвижных объектов, радары для автомобилей, осуществляющие круговой обзор.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Цилиндрическая сканирующая антенна бокового излучения, содержащая:

Цилиндрический волновод с диэлектрическим заполнением, образованный двумя параллельными металлическими дисками - верхним и нижним;

Диэлектрический цилиндр, расположенный между вышеупомянутыми дисками и являющийся заполнением цилиндрического волновода, при этом диэлектрический цилиндр выполнен с возможностью функционирования как в качестве согласующего трансформатора между цилиндрическим волноводом и свободным пространством, так и в качестве диаграммообразующего элемента;

Прямоугольную решетку излучателей, ориентированных нормально плоскости самой решетки, помещенную осесимметрично в цилиндрический волновод, причем плоскость решетки расположена параллельно основанию цилиндрического волновода с расстоянием между элементами решетки в обоих направлениях, равным , где f - длина волны в заполненном цилиндрическом волноводе;

Два металлических цилиндра - верхний и нижний - с боковым пазом, расположенные соответственно над верхним и под нижним дисками и выполненные с возможностью функционирования в качестве вспомогательных цилиндрических излучателей, корректирующих диаграммы направленности в угломестной плоскости.

2. Антенна по п.1, отличающаяся тем, что нижний металлический диск и нижний металлический цилиндр имеют радиусы больше, чем у верхних соответствующих частей, и равные радиусу цилиндрического волновода.

3. Антенна по п.1, отличающаяся тем, что верхний и нижний цилиндры соединяются с соответствующими дисками преимущественно посредством пайки.

4. Антенна по п.1, отличающаяся тем, что диэлектрический цилиндр выполнен из ламинированного диэлектрика.

5. Антенна по п.4, отличающаяся тем, что диэлектрический цилиндр снабжен согласующим устройством в виде выступающей части цилиндра, выполненного с возможностью согласования <-20 дБ при высоте волновода ~ /4 и высоте излучателя -0,12 .

6. Антенна по п.1, отличающаяся тем, что верхний и нижний диски, образующие цилиндрический волновод, выполнены печатным способом.

7. Антенна по п.1, отличающаяся тем, что излучатели конструктивно представляют собой металлизированные отверстия, выполненные в диэлектрике.

частотный диапазон электромагнитного излучения (100ё 300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров.

Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн. Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров. Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.

СВЧ-полупроводниковые приборы и их применение . М., 1972
Мощные электровакуумные приборы СВЧ . М., 1974
Полупроводниковые приборы в схемах СВЧ . М., 1979

Найти "СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН " на


Владельцы патента RU 2566608:

Изобретение относится к антеннам. Заявлена индуктивная антенна, сформированная из, по меньшей мере, двух пар сегментов, геометрически состыкованных друг с другом, каждая из которых содержит первый и второй параллельные проводники, изолированные друг от друга, при этом упомянутые пары относятся к первому типу, в котором проводники прерываются в своих средних точках, образуя два сегмента, причем первый (соответственно второй) проводник одного сегмента подключен ко второму (соответственно первому) проводнику другого сегмента пары, или ко второму типу, в котором первый проводник прерывается приблизительно в своей средней точке, образуя два сегмента, и второй проводник не прерывается. Техническим результатом является обеспечение большой индуктивной антенны, адаптированной к передачам в диапазоне частот от одного МГц до нескольких сотен МГц. 2 н. и 10 з.п. ф-лы, 11 ил.

Область техники, к которой относится изобретение

Настоящее изобретение в общем случае относится к антеннам и в частности к формированию высокочастотной индуктивной антенны.

Изобретение, в частности, применяется к антеннам, предназначенным для передач на радиочастотах порядка нескольких МГц, например для систем связи на основе бесконтактных чиповых карт, радиометок или электромагнитных приемоответчиков.

Уровень техники

На фиг.1 очень схематично показан пример индуктивной системы связи наподобие той, к которой, в порядке примера, применяется настоящее изобретение.

Такая система содержит считывающее устройство или базовую станцию 1, генерирующую электромагнитное поле, которое могут регистрировать один или несколько приемоответчиков 2, находящихся в этом поле. Такие приемоответчики 2 представляют собой, например, электронную метку 2", установленную на объекте в целях идентификации, бесконтактную смарт-карту 2” или, в более общем случае, любой электромагнитный приемоответчик (обозначенный блоком 2 на фиг.1).

На стороне считывающего устройства 1 последовательный резонансный контур сформирован из резистора r, конденсатора C1 и индуктивного элемента L1 или антенны. Этот контур возбуждается высокочастотным генератором 12 (ВЧ), управляемым (соединение 14) другими схемами, которые не показаны, базовой станции 1. Высокочастотная несущая, в общем случае, модулируется (по амплитуде и/или по фазе) для передачи данных на приемоответчик.

На стороне приемоответчика 2 резонансный контур, в общем случае параллельный, содержит индуктивный элемент или антенну L2, соединенную параллельно с конденсатором C2 и с нагрузкой R, представляющей электронные схемы 22 приемоответчика 2. Этот резонансный контур, находясь в поле считывающего устройства, регистрирует высокочастотный сигнал, передаваемый базовой станцией. В случае бесконтактной карты такие схемы, обозначенные блоком 22, содержащие одну или несколько микросхем, подключены к антенне L2, в общем случае поддерживаемой опорой карты. В случае электронной метки 2" индуктивный элемент L2 сформирован из проводящей обмотки, подключенной к электронной микросхеме 22.

Хотя символическое представление в форме последовательного резонансного контура на стороне базовой станции и параллельного резонансного контура на стороне приемоответчика является обычным, на практике можно найти последовательные резонансные контуры на стороне приемоответчика и параллельные резонансные контуры на стороне базовой станции.

Резонансные контуры считывающего устройства и приемоответчика, в общем случае, настроены на одну и ту же резонансную частоту ω (L1.C1.ω 2 =L2.C2.ω 2 =1).

Приемоответчики, в общем случае, не имеют автономных источников питания и извлекают мощность, необходимую для их работы, из магнитного поля, генерируемого базовой станцией 1.

Согласно другому примеру применения базовая станция используется для зарядки батареи или другого элемента накопления энергии приемоответчика. В этом случае высокочастотное поле, излучаемое базовой станцией, не нужно модулировать для передачи данных.

В индуктивной антенне проводящая цепь чаще всего является замкнутой цепью, проводящей ток, предназначенный для генерации радиочастотного магнитного поля. Замкнутая проводящая цепь получает питание от радиочастотного генератора 12.

Когда размер антенны становится значительным относительно длины волны, циркуляция тока, предназначенного для генерации магнитного поля по проводнику, затрудняется. Амплитуда и фаза тока испытывают сильные изменения вдоль цепи, из-за чего антенна больше не может действовать в индуктивной петле. Также часто бывает желательно иметь на стороне базовой станции антенну большого размера по сравнению с размером антенны приемоответчика. На самом деле, приемоответчики, в общем случае, движутся (поддерживаемые пользователем), когда представляются базовой станции, и желательно, чтобы они могли регистрировать поле даже в движении. В других случаях желательно, чтобы размер области, где возможна связь с приемоответчиком, был значительным. С другой стороны, полезно использовать большую индуктивную петлю для обеспечения большой дальности связи.

Чем длиннее проводящая цепь индуктивной антенны, тем больше циркуляция тока вдоль цепи отличается от желаемой. Таким образом, существует значительное изменение амплитуды и фазы тока вдоль цепи, которое изменяет и нарушает пространственное распределение генерируемого магнитного поля. Также существует увеличение электрических потенциалов между разными участками проводящей цепи, из-за чего поведение антенны становится чувствительным к присутствию диэлектрических материалов в своем ближайшем окружении.

Таким образом, длина индуктивной петли традиционно ограничена.

Ранее было предложено делить проводящую петлю на элементы, по отдельности, имеющие одинаковую длину, и повторно соединять эти элементы с конденсаторами для обеспечения возможности использовать большую петлю. Такое решение описано, например, в патенте US 5258766.

Ранее было предложено использовать экранированные индуктивные петли с прерыванием экранирования и инверсией проводника. Такие петли, в общем случае, называются "петлями Мебиуса". Такие структуры описаны, например, в статье Дункана (P. H. Duncan) "Analysis of the Moebius Loop Magnetic Field Sensor", опубликованной в IEEE Transaction on Electromagnetic Compatibility, май 1974. Однако такие структуры все же имеют ограниченную длину.

Таким образом, имеется необходимость в формировании большой индуктивной антенны.

Раскрытие изобретения

Задачей варианта осуществления настоящего изобретения является обеспечение индуктивной антенны, позволяющей полностью или частично преодолеть недостатки традиционных антенн.

Другой задачей варианта осуществления настоящего изобретения является обеспечение антенны, которая особенно хорошо адаптирована к передачам в диапазоне частот от одного МГц до нескольких сотен МГц.

Еще одной задачей варианта осуществления настоящего изобретения является обеспечение большой индуктивной антенны (вписывающейся в площадь поверхности, по меньшей мере в десять раз большую) по сравнению с антеннами приемоответчиков, с которыми ей предстоит совместно работать.

Еще одной задачей варианта осуществления настоящего изобретения является обеспечение антенной структуры, совместимой с различными компоновками.

Для решения всех или некоторых из этих и других задач настоящее изобретение предусматривает индуктивную антенну, сформированную из по меньшей мере двух пар геометрически состыкованных секций, каждая из которых содержит первый и второй параллельные проводящие элементы, изолированные друг от друга, причем каждая пара содержит на каждом конце один вывод электрического соединения своего первого проводящего элемента с проводящим элементом соседней пары, в которой упомянутые пары могут относиться:

к первому типу, где проводящие элементы прерываются приблизительно посередине, образуя две секции, причем первый, соответственно второй, проводящий элемент секции подключен ко второму, соответственно первому, проводящему элементу другой секции пары; или

ко второму типу, где первый проводящий элемент прерывается приблизительно посередине, образуя две секции, и второй проводящий элемент не прерывается.

Согласно варианту осуществления настоящего изобретения проводящие секции являются продольно-линейными, причем антенна образует петлю, имеющую пространственную геометрию любого типа.

Согласно варианту осуществления настоящего изобретения, соответствующие длины проводящих элементов выбираются согласно резонансной частоте антенны.

Согласно варианту осуществления настоящего изобретения соответствующие длины проводящих элементов выбираются согласно погонной емкости между первым и вторым проводящими элементами.

Согласно варианту осуществления настоящего изобретения по меньшей мере один емкостной элемент соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

Согласно варианту осуществления настоящего изобретения по меньшей мере один резистивный элемент соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

Согласно варианту осуществления настоящего изобретения каждая секция является секцией коаксиального кабеля.

Согласно варианту осуществления настоящего изобретения секции сформированы из витых проводящих элементов.

Настоящее изобретение также предусматривает систему для генерации высокочастотного поля, содержащую:

индуктивную антенну; и

Согласно варианту осуществления настоящего изобретения, упомянутая схема возбуждения содержит высокочастотный трансформатор, вторичная обмотка которого располагается между первыми проводящими элементами двух соседних пар антенны.

Краткое описание чертежей

Вышеописанные и другие задачи, признаки и преимущества настоящего изобретения будут подробно рассмотрены в нижеследующем неограничительном описании конкретных вариантов осуществления вкупе с прилагаемыми чертежами, на которых:

на фиг.1, описанной ранее, схематично показан в форме блоков пример радиочастотной системы связи, к которой применяется настоящее изобретение;

фиг.2 - упрощенное представление варианта осуществления индуктивной антенны согласно изобретению;

фиг.3 демонстрирует вариант осуществления пары секций первого типа антенны, показанной на фиг.2;

фиг.4 - упрощенное представление другого варианта осуществления индуктивной антенны согласно изобретению;

фиг.5 демонстрирует электрическую схему варианта осуществления первого типа пары секций антенны;

фиг.5A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.5;

фиг.6 демонстрирует электрическую схему варианта осуществления второго типа пары секций антенны;

фиг.6A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.6;

фиг.7 демонстрирует вариант осуществления индуктивной антенны и схем возбуждения и настройки;

фиг.8A и 8B демонстрируют два других варианта осуществления пары секций первого типа; и

фиг.9 демонстрирует другой вариант осуществления пары секций второго типа.

Осуществление изобретения

Одинаковые элементы обозначены одинаковыми ссылочными позициями на разных чертежах, выполненных с нарушением масштаба. Для наглядности показаны и будут описаны только элементы, полезные для понимания настоящего изобретения. В частности, схемы возбуждения индуктивной антенны не описаны подробно, причем изобретение совместимо с сигналами возбуждения, используемыми в настоящее время для этого типа антенны. Кроме того, приемоответчики, для которых предназначены антенны генерации поля, подлежащие описанию, также не описаны подробно, причем изобретение совместимо с различными современными приемоответчиками, бесконтактными картами, радиометками и т.д.

На фиг.2 показан упрощенный вид антенны согласно варианту осуществления настоящего изобретения.

В этом варианте осуществления предусмотрена стыковка нескольких секций 32 и 34 коаксиального кабеля. Эти секции собраны в пары 3, в каждой из которых две секции 32 и 34 соединены, образуя соединение мебиусова типа, то есть жила 324 первой секции подключена к оплетке 342 второй секции в паре, а оплетка 322 подключена к жиле 344 этой второй секции.

В предпочтительном примере, представленном на фиг.2, стыкуются четыре пары 3 секций. Электрическое соединение 4 между двумя соседними парами обеспечивается только одним единственным из проводящих элементов. В примере, представленном на фиг.2, соединение 4 между двумя соседними парами обеспечивается соответствующими оплетками противоположных секций двух пар. Другой проводящий элемент не подключен, то есть в примере, представленном на фиг.2, жилы двух соседних пар не соединены.

Кажется, проще делать однородный выбор для всех секций, чтобы все первые проводники соответствовали либо оплетке, либо жиле всех секций. В этом контексте проводящий элемент одного типа, оплетка или жила, будет использоваться для соединения пар всей антенны. Оплетка является предпочтительной, поскольку ее выбор обеспечивает лучшее электрическое экранирование. Как вариант, можно предложить обеспечивать соединения 4 за счет соответствующих жил противоположных пар. Однако сохраняется возможность делать разный выбор назначения первого проводника и второго проводника между первой секцией и второй секцией одной и той же пары, например, выбирать оплетку в качестве первого проводника для первой секции и жилу в качестве первого проводника для второй секции. Таким образом, согласно другому варианту можно предложить обеспечивать соединения 4 между двумя соседними парами от жилы к оплетке или наоборот.

На фиг.3 показано упрощенное представление пары 3 двух секций 32 и 34 антенны, показанной на фиг.2, соответствующих первому типу пары секций. На уровне центрального соединения 36 проводящая жила 324 секции 32 подключена к оплетке (или экрану) 342 секции 34, и оплетка 322 секции 32 подключена к жиле 344 секции 34.

На фиг.4 показано упрощенное представление другого варианта осуществления антенны.

Две пары 3 секций 32 и 34 первого типа (с перекрестным центральным соединением - фиг.3) попеременно подключаются к двум парам 5 секций 52 и 54 коаксиального кабеля, причем центральное соединение 56 секций различается. В этих парах 5 второго типа секции 52 и 54 соединены своими соответствующими жилами 524 и 544, тогда как их оплетки 522 и 542 не соединены. Стыковые электрические соединения пар тем не менее обеспечиваются посредством взаимного соединения 4 оплеток при несоединенных жилах.

Распределение и количество пар двух типов может изменяться. Однако пары первого типа более предпочтительны.

Фиг.5 демонстрирует электрическую схему первого типа пары 3 секций.

Фиг.5A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.5.

Пара 3 секций 32 и 34 содержит два вывода 42 и 44 соединения с соседними парами. Вывод 42 подключен к первому проводящему элементу 322 секции 32, который, другим своим концом, подключен через перекрестное взаимное соединение 36 ко второму проводящему элементу 344 секции 34, имеющей неподключенный свободный конец 3441 (на стороне вывода 44). Второй проводящий элемент 324 секции 32 имеет свободный конец 3241 (на стороне вывода 42) и другой свой конец, подключенный соединением 36 к первой проводящей секции 342 секции 34, другой конец которой подключен к выводу 44.

Эквивалентная электрическая схема такой пары показана на фиг.5A и предусматривает последовательное электрическое соединение индуктивности величиной L0 и конденсатора величиной C0, где L0 обозначает индуктивность, соответствующую совокупности секций 322 и 342 проводника, рассматриваемой как один и тот же проводник для вычисления этой величины, и где C0 обозначает все внутренние емкости, между жилой и оплеткой в случае коаксиального кабеля - между двумя проводниками (между проводниками 322 и 324 и между проводниками 342 и 344) в случае других вариантов осуществления. Согласно вышеприведенному описанию, взаимные индуктивности между совокупностью секций 322 и 342 (рассматриваемой как проводник для вычисления) и совокупностями секций, эквивалентных секциям 322 и 342 других пар (также рассматриваемыми как проводник для вычисления), пренебрежимо малы. Вследствие формирования в виде петель разные пары достаточно удалены друг от друга, что позволяет пренебрегать взаимными индуктивностями по сравнению со значением L0, например, рассмотренным выше.

Пренебрегая омическими потерями в проводниках и диэлектрическими потерями между проводниками, импеданс пары секций в этом варианте осуществления можно выразить в виде Z=jL0ω+1/jC0ω.

Фиг.6 демонстрирует электрическую схему второго типа пары 5 секций.

Фиг.6A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.6.

В паре 5 секций 52 и 54 первый проводник 522 первой секции 52 подключен к первому выводу 42 доступа и ее другой конец 5222 остается отключенным (несоединенным). Первый проводящий элемент 542 второй секции 54 остается на стороне секции 52 отключенным (конец 5422) и на другом своем конце подключен к выводу 44 доступа к паре 5. Второй проводник 524 первой секции 52 подключен взаимным соединением 56 ко второму проводнику 544 второй секции 54. Концы 5241 и 5441 секций 524 и 544 остаются отключенными.

С электрической точки зрения и согласно фиг.6A, предполагая, что проводники пар 3 и 5 имеют одинаковую длину, пара 5 предусматривает последовательное соединение индуктивного элемента номиналом L0 с емкостным элементом номиналом C0/4, где L0 обозначает индуктивность, соответствующую совокупности секций 522 и 542 проводника, и C0 обозначает все внутренние емкости (между проводниками 522 и 524 и между проводниками 542 и 544).

Импеданс пары секций в этом варианте осуществления можно выразить в виде Z=jL0ω+1/j(C0/4)ω.

С электрической точки зрения две пары последовательно соединенных секций 3 эквивалентны одной паре секций 5 удвоенной длины.

Длины будут адаптированы к рабочей частоте антенны, благодаря чему каждая пара секций соблюдает настройку, то есть LCω 2 =1. Можно видеть, что согласно распределению типов пар между парами 3 и 5 длины проводящих элементов и значение погонной емкости между двумя проводниками секции могут изменяться. Значения емкостных элементов уже не являются пренебрежимо малыми, и антенна менее чувствительна к возмущениям своей среды.

Формирование антенны с несколькими парами секций наподобие показанных на фиг.5 и 6 позволяет разделять электрическую цепь и не позволяет использовать слишком длинные индуктивные элементы, где ток, текущий по индуктивной замкнутой цепи, не может иметь однородные амплитуду и фазу вдоль всей цепи. На самом деле соединение пар между собой эквивалентно последовательному соединению нескольких резонансных контуров с одинаковой резонансной частотой. В этом случае снимается ограничение на длину индуктивных антенн.

Разные пары секций не обязательно имеют одинаковые длины, обеспеченные для каждой пары, для соблюдения, возможно, с размещением между ними конденсатора, подключенного между двумя проводниками на уровне перехода между парами, резонансного соотношения.

Фиг.7 демонстрирует вариант осуществления индуктивной антенны и схем возбуждения и настройки. Здесь антенна содержит три пары 3 первого типа.

Схема 18 возбуждения представляет собой высокочастотный трансформатор, первичная обмотка 182 которого принимает сигнал возбуждения высокочастотного генератора 12 (фиг.1) и в котором два вывода вторичной обмотки 184 подключены к выводам 42 и 44 двух соседних пар вместо их взаимного соединения 4. Таким образом, вторичная обмотка образует это соединение между двумя парами. Трансформатор предпочтительно выбирать таким образом, чтобы брать обратно к стороне вторичной обмотки индуктивность, которая пренебрежимо мала на рабочей частоте относительно значения L0, что, например, имеет место, когда коэффициент связи близок к 1.

Кроме того, схема 16 настройки соединяет свободные концы 3241 и 3441 проводников 324 и 344 этих двух пар, которые, таким образом, соединяются. Схема 16 в примере, представленном на фиг.7, является резистивной (резистор R4) и емкостной (конденсатор C4) цепью. Функция конденсатора C4 состоит в регулировке резонансной частоты антенны. Функция резистора R4 состоит в настройке добротности Q антенны на выбранное значение, например, для регулировки ширины полосы.

Конденсаторы можно размещать между разными парами, подключать между проводящими элементами одной и той же секции, между проводящими элементами, оставшимися неподключенными (в данном случае жилами секций коаксиального кабеля), и точкой 42 или 44 соединения (в данном случае оплетками секций коаксиального кабеля), или между проводниками, оставшимися неподключенными, соединенных между собой секций каждой пары, для снижения резонансной частоты.

Длину проводящего элемента 324 или 344, оставшегося неподключенным (в данном случае жил), также можно уменьшать для снижения полной емкости соответствующей секции для увеличения резонансной частоты.

Аналогично, резистивные элементы можно подключать между свободными концами проводящих элементов между двумя парами для регулировки и снижения добротности сформированной таким образом антенны. Резистивные элементы также можно вставлять вместо взаимного соединения 4 между двумя парами для снижения и регулировки добротности.

Разным секциям не обязательно придавать прямолинейную форму. Согласно фиг.7, секции могут располагаться в различных компоновках. Таким образом, замкнутая антенна изобретения может быть выполнена в форме рамки, образовывать петли, иметь округлую форму, иметь формы в трех пространственных измерениях и т.д.

В вышеописанных вариантах осуществления схемы регулировки были проиллюстрированы с соединением между парами. Следует отметить, что как вариант и в случае пар второго типа (5) такие схемы можно вставлять в сами пары секций. В этом случае подключаемый конденсатор соединяет два несоединенных между собой свободных конца элементов 522 и 542.

Резистивные элементы также можно вставлять вместо соединений между проводниками двух секций одной и той же пары (первого типа 3 и второго типа 5) на переходе 36 и 56 для снижения добротности.

На фиг.8A, 8B и 9 показаны пары проводящих секций согласно другому варианту осуществления настоящего изобретения. Этот вариант осуществления иллюстрирует, что пары проводящих секций могут быть сформированы посредством витых проводников, а не посредством коаксиальных секций.

На фиг.8A и 8B показаны два варианта осуществления пары 3 секций первого типа.

Согласно фиг.8A, две секции витого провода соединены между собой аналогично тому, что описано в связи с секциями коаксиального кабеля.

Фиг.8B демонстрирует другой вариант осуществления перекрестного взаимного соединения пары секций, где перекрещивание фактически достигается переворачиванием проводника, к которому присоединен выходной вывод (например, 44), относительно проводника, к которому присоединен входной вывод (например, 42), и проводящие секции не прерываются внутри пары.

Фиг.9 демонстрирует вариант осуществления пары 5 секций 52 и 54 второго типа, сформированных из витых проводников.

Согласно еще одному варианту осуществления, который не показан, пары секций формируются из невитых проводников, экранированных или нет.

Согласно еще одному варианту осуществления, который не показан, пары секций формируются дорожками, нанесенными на изолирующую подложку.

Антенна, например, определенная выше, также может быть определена как содержащая по меньшей мере две геометрически состыкованные продольно-линейные узловые сборки (3, 5, 3"), каждая из которых содержит согласно своей длине первый и второй параллельные проводящие элементы, изолированные друг от друга, и на каждом конце в соединении с первым проводящим элементом один вывод электрического соединения с соседней узловой сборкой и второй проводник электрически не подключен, где все или часть из узловых сборок относятся:

к первому типу, где каждый из первого и второго проводников прерывается приблизительно посередине и повторно подключается к другому проводнику узловой сборки; или

ко второму типу, где первый проводник прерывается приблизительно посередине и второй проводник не прерывается.

Согласно такому определению проводящий элемент в случае перекрестного соединения (фиг.3, 5 и 8A) сформирован из двух участков, электрически соединенных последовательно, проводящих проводов (жилы или оплетки), отличающихся от используемого кабеля таким образом, что каждый вывод соединения подключен к проводнику той же природы (оплетке или жиле) узловой сборки и при этом электрически не подключен к другому выводу.

Согласно конкретному варианту осуществления секции можно формировать, разрезая обычные коаксиальные линии. В настоящее время существуют некоторые с характеристическими импедансами 50, 75 и 93 Ом, имеющие соответствующие значения погонной емкости 100 пФ/м, 60 пФ/м и 45 пФ/м. Например, в случае перекрестного соединения для 50-омного коаксиального кабеля можно получить индуктивности L0 порядка одного мкГн.

Согласно другому конкретному варианту осуществления, предусматривающему использование защищенных проводников (витых или нет), кабели имеют погонную емкость между проводниками приблизительно в пределах от 30 до 40 пФ/м. Для таких кабелей можно получить, например, индуктивности L0, имеющие значение в пределах приблизительно между 2 и 3 мкГн.

Фиг.10 является упрощенным представлением антенны согласно другому варианту осуществления. Как и в других вариантах осуществления, антенна содержит по меньшей мере две пары (первого типа 3, фиг.5, или второго типа 5, фиг.6) секций, каждая из которых сформирована из параллельных проводящих элементов, изолированных друг от друга. В примере, представленном на фиг.10, предполагается, что это пары секций коаксиального кабеля. Эта структура завершается дополнительной полупарой, сформированной из двух проводящих элементов первого типа 32, 34 или второго типа 52, 54. Вместо установки на конце антенны полупару можно устанавливать между двумя парами. Присутствие дополнительной полупары можно использовать для регулировки длины антенны.

На фиг.11 показано упрощенное представление варианта, согласно которому два сегмента 61 и 63 коаксиального кабеля механически размещены рядом параллельно друг другу и их оплетки электрически соединены друг с другом по меньшей мере на двух концах для формирования единого первого проводящего элемента (соединение 67). Жилы электрически соединены для формирования единого второго проводящего элемента (соединение 65 на одном из концов). Каждый элемент наподобие проиллюстрированного на фиг.11 образует секцию 32, 34, 52 или 54 антенной структуры. Преимущество секции, образуемой сборкой сегментов, показанных на фиг.11, состоит в увеличении погонной емкости секции между первым проводящим элементом и вторым проводящим элементом. Это позволяет уменьшить необходимую длину пары для одинаковой резонансной частоты и, таким образом, обеспечивает дополнительную гибкость в отношении геометрии антенны.

При формировании антенн из коаксиальных секций дополнительное преимущество обусловлено емкостью между экраном и проводящей жилой для формирования индуктивных и емкостных секций, имеющих увеличенную емкость (что позволяет делать их более короткими для той же частоты), в отличие от проводного элемента.

Преимущество описанных вариантов осуществления состоит в том, что они позволяют формировать антенны больших размеров для применений к резонансным частотам более одного МГц (обычно между 10 и 100 МГц). Таким образом, антенны можно создавать на порталах, прилавках и т.д., обеспечивая при этом однородную циркуляцию тока вдоль петли для генерации желаемого поля.

Согласно конкретному варианту осуществления антенна, адаптированная к работе на частоте 13,56 МГц, может быть выполнена в форме прямоугольной рамки приблизительно 87 см на 75 см, сформированной из трех пар проводников (трижды две секции) первого типа в виде 50-омного коаксиального кабеля с погонной емкостью 100 пФ/м (диаметр оплетки 3,5 мм), распределенного в двух парах, имеющих L-образную конфигурацию с осевой длиной 1,07 м (с индуктивностью L0 приблизительно 1,22 мкГн или 1,21 мкГн, с учетом взаимной индуктивности), и одной паре, имеющей U-образную конфигурацию с осевой длиной 1,08 м (с индуктивностью L0 приблизительно 1,20 мкГн или 1,19 мкГн, с учетом взаимных индуктивностей). Резонансную частоту можно регулировать с помощью переменного конденсатора.

Были описаны различные варианты осуществления, и специалисты в данной области техники могут предложить различные изменения и модификации. В частности, размеры, приданные проводящим секциям и емкостным элементам, зависят от применения, и их вычисление не выходит за пределы возможностей специалистов в данной области техники, основанные на функциональных указаниях, заданных выше, и желаемых резонансной частоте и размере антенны.

1. Индуктивная антенна, содержащая по меньшей мере две пары геометрически состыкованных секций (32, 34; 52, 54), каждая из которых содержит первый (322, 342; 522, 542) и второй (324, 344; 524, 544) параллельные проводящие элементы, изолированные друг от друга, причем каждая пара содержит на каждом конце один вывод электрического соединения (42, 44) своего первого проводящего элемента с проводящим элементом соседней пары, при этом упомянутые пары могут относиться:
к первому типу (3), где проводящие элементы прерываются посередине, образуя две секции, причем первый, соответственно второй, проводящий элемент секции подключен ко второму, соответственно первому, проводящему элементу другой секции пары, или
ко второму типу (5), где первый проводящий элемент (522, 542) прерывается посередине, образуя две секции, и второй проводящий элемент (524, 544) не прерывается.

2. Антенна по п.1, в которой проводящие секции являются продольно-линейными, причем антенна образует петлю, имеющую пространственную геометрию любого типа.

3. Антенна по любому из предыдущих пунктов, в которой соответствующие длины проводящих элементов (322, 324, 342, 344; 522, 524, 542, 544; 322", 324", 342", 344") выбираются согласно резонансной частоте антенны.

4. Антенна по п.1, в которой соответствующие длины проводящих элементов (322, 324, 342, 344; 522, 524, 542, 544; 322", 324", 342", 344") выбираются согласно погонной емкости между первым и вторым проводящими элементами.

5. Антенна по п.1, в которой по меньшей мере один емкостной элемент (C4) соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

6. Антенна по п.1, в которой по меньшей мере один резистивный элемент (R4) соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

7. Антенна по п.1, в которой каждая секция (32, 34, 52, 54) является секцией коаксиального кабеля.

8. Антенна по п.1, в которой каждая секция сформирована из двух сегментов (61, 63) коаксиального кабеля.

9. Антенна по п.1, в которой секции (32, 34, 52, 54, 32", 34") сформированы из витых проводящих элементов.

10. Антенна по п.1, дополнительно содержащая полупару, сформированную из секции двух проводящих элементов, подключенных к по меньшей мере одной паре.

11. Система для генерации высокочастотного поля, содержащая
индуктивную антенну по любому из предыдущих пунктов и
схему для возбуждения антенны высокочастотным сигналом.

12. Система по п.11, в которой упомянутая схема возбуждения содержит высокочастотный трансформатор (18), вторичная обмотка которого располагается между первыми проводящими элементами двух соседних пар антенны.

Изобретение относится к антенной технике. Трехкомпонентное приемное антенное устройство содержит металлическое основание, на котором размещены две взаимно ортогональные приемные магнитные антенны на стержневых ферритовых сердечниках с обмотками на каждом из сердечников, три симметрирующих трансформатора, три разъема, емкостную антенну, торцевые элементы антенного снижения. При этом дифференциальные выводы обмоток через симметрирующие трансформаторы соединены с соответствующими разъемами. Электрические экраны антенн выполнены с продольными щелями, линии связи выполнены экранированными, магнитные антенны смещены относительно друг друга по вертикали, расположены над металлическим основанием, плоскость которого параллельна продольным осям магнитных антенн, обмотки каждой из магнитных антенн помещены в собственный электрический экран. Емкостная антенна содержит верхний и нижний металлические электроды, состоящие из четырех плоских сегментов, которые расположены аксиально симметрично в одной плоскости вокруг центральной оси устройства и электрически соединены между собой в общей точке. Причем плоскость верхнего электрода расположена над верхней магнитной антенной, а плоскость нижнего электрода расположена под нижней магнитной антенной. Технический результат - устранение двузначности определения пеленга. 3 ил.

Изобретение относится к приемным магнитным антеннам с всенаправленной диаграммой направленности и может быть использовано в полевых условиях в носимом приемнике персонала МЧС и т.п. для приема радиосигналов команд и аварийного оповещения. Магнитная антенна состоит из двух катушек индуктивности, выполненных на двух ферромагнитных сердечниках, расположенных под углом 90° относительно друг друга. Причем катушки индуктивности электрически подключены синфазно, а к их концам параллельно подключен дополнительно введенный конденсатор. Технический результат заключается в получении всесторонней диаграммы направленности. 1 ил.

Изобретение относится к антеннам метрового диапазона волн. Рамочная антенна содержит проводящую трубку (ПТ) с первым концом и вторым концом, согнутую в кольцо с образованием зазора между первым и вторым концами, фидер, дополнительно содержит первую проводящую втулку (ППВ) и вторую проводящую втулку (ВПВ), согласующий отрезок кабеля (СОК) с первым концом и вторым концом, при этом ППВ установлена в ПТ в области первого ее конца с образованием точки гальванического контакта с ПТ, ВПВ установлена в ПТ в области второго ее конца с образованием точки гальванического контакта с ПТ, СОК проложен в ПТ через ВПВ с образованием в области зазора точки гальванического контакта между внешним проводником СОК и ВПВ, второй конец СОК разомкнут и ни с чем не соединен, в области, диаметрально противоположной указанному зазору, выполнено отверстие, фидер введен в ПТ через указанное отверстие и проложен в ПТ до первого ее конца, внешний проводник фидера в области зазора соединен с ППВ с образованием точки гальванического контакта, центральный проводник фидера проложен в области зазора с образованием точки гальванического контакта с центральным проводником СОК. Технический результат заключается в возможности точной настройки рамочной антенны на рабочую (резонансную) частоту. 7 ил.

Изобретение относится к области радиотехники, а именно к рамочным антеннам, используемым в качестве источника магнитного поля. Излучающая антенна содержит две идентичные рамки, каждая из которых представляет собой металлическую трубку, имеющую поперечный разрез, делящий трубку на две изолированные друг от друга равные части, внутри которой расположен проводник, и электрически связанное с рамками согласующее устройство. Согласующее устройство имеет металлический корпус, на котором закреплены указанные металлические трубки, с расположенным внутри его цилиндрическим резистором, ось симметрии которого совпадает с осью симметрии корпуса, а к каждому из торцов присоединена сборка параллельно соединенных и радиально расположенных чип-конденсаторов. При этом резистор, указанные сборки и рамки антенны электрически соединены между собой с образованием моста, в диагональ которого включен резистор, в одну пару плеч включены указанные сборки чип-конденсаторов, а в другую - проводники рамок антенны. Технический результат заключается в расширении диапазона рабочих частот излучающей антенны. 3 н.п. ф-лы, 4 ил.

Изобретение относится к антеннам. Заявлена индуктивная антенна, сформированная из, по меньшей мере, двух пар сегментов, геометрически состыкованных друг с другом, каждая из которых содержит первый и второй параллельные проводники, изолированные друг от друга, при этом упомянутые пары относятся к первому типу, в котором проводники прерываются в своих средних точках, образуя два сегмента, причем первый проводник одного сегмента подключен ко второму проводнику другого сегмента пары, или ко второму типу, в котором первый проводник прерывается приблизительно в своей средней точке, образуя два сегмента, и второй проводник не прерывается. Техническим результатом является обеспечение большой индуктивной антенны, адаптированной к передачам в диапазоне частот от одного МГц до нескольких сотен МГц. 2 н. и 10 з.п. ф-лы, 11 ил.

\р.л. конструкции\антенны\...

Высокочастотные усилители против антенн

Этот материал полезен для тех, кто хотел бы потратить деньги для улучшения качества связи с максимальной эффективностью, В нём рассмотрены различные способы достижения так необходимых всем децибел и приведена оценка затрат для их получения.

А. Дубинин RZ3GE, А. Калашников RW3AMC

Не все, но многие радиолюбители, рано или поздно сталкиваются с проблемой улучшения качества связи. Вопросов при этом возникает много, но основных, как правило, всего два: покупать мощный линейный усилитель или улучшать антенную систему? И тот и другой во многом можно отнести к разряду философских. Ну а мы попробуем подробно рассмотреть их с точки зрения материальных затрат и эргономики, т.е. - улучшения потребительских качеств радиосистемы и, на основе этих размышлений попытаемся дать советы, которыми некоторые из вас смогут даже попытаться воспользоваться.

В последние годы в мире наблюдается устойчивая тенденция к уменьшению мощности передатчиков там, где такая возможность существует. Это обусловлено внедрением нового направления развития современной техники - энергосбережения, позволяющего экономить постоянно истощающиеся запасы полезных ископаемых, которые в свою очередь, используются для производства электрической энергии, и всё более громкими заявлениями “зелёных” о вреде любого радиоизлучения. Эти факты, естественно, не являются определяющими при выборе способа улучшения эффективности связи для миллионов радиолюбителей во всём мире. Им (в т.ч. нам) всё время хочется дальше-больше-мощнее, даже если при этом придётся одеться в свинцовые халаты! Кому-то нужен первый DXCC, кому-то 9В WAZ, и так до бесконечности! Накопление наград, прославляющих нас самих, для некоторых становится целью жизни №1! С возрастом это превращается в привычку, и остановиться уже невозможно.

Первое, что радисту приходит в голову при желании выделиться среди остальных - это изготовить необыкновенно мощный усилитель. Однако при детальном рассмотрении задачи факты указывают на то, что установка излишне мощного линейного усилителя для увеличения уровня излучаемого сигнала является далеко не оптимальным решением.. Одним из таких фактов является соотношение цена/качество достигнутого результата. Ну а в нашей стране проблема цены удовольствия пока остается в этом вопросе, пожалуй, главной.

Перед дальнейшим рассмотрением вопроса сделаем небольшое отступление для краткого ознакомления с неким прибором: т.н.- S-метром, предназначенным для оценки силы сигнала по S-шкале соответственно. Таким прибором снабжены все промышленно выпускающиеся трансиверы. Шкала этого прибора является нелинейной, а цена деления его шкалы соответствует изменению сигнала на 6 дБ. Таким образом, 1 балл соответствует 6 дБ. Показания S-метра любого трансивера нельзя рассматривать как абсолютно точные и, порой, даже как приблизительные (нельзя забывать, что на KB уровень сигнала приходящего из эфира вообще НЕЛЬЗЯ сравнивать с пришедшим РАНЕЕ из-за случайного характера его пути от излучателя к приёмнику, ещё сложнее это сделать в режиме SSB, т.к. амплитуда сигнала меняется из за изменения уровня голоса оператора). Эти показания годятся лишь для проведения качественного анализа степени увеличения излучаемой мощности передающего устройства.

Теперь проведём некое практическое занятие. Попробуем постепенно увеличивать выходную мощность передатчика и наблюдать насколько изменяются показания S-метра на приёмнике вашего корреспондента и построим график, в котором отражаются затраты на приобретение соответствующего усилителя. Известно, что для увеличения силы сигнала на принимающей стороне на 3 дБ необходимо увеличить мощность усилителя передающей станции В ДВА РАЗА! Заметим, что 3 дБ соответствуют только половине одного деления шкалы S-метра, т.е. ровно пол-балла!

Соответственно, для увеличения силы сигнала на принимающей стороне всего на один балл по шкале S-метра необходимо увеличить мощность передатчика уже в ЧЕТЫРЕ раза! Используя такую нехитрую арифметику можно подсчитать степень увеличения мощности выходного сигнала вашего корреспондента исходя из показаний S-метра. На рис. 1 показаны три шкалы S-метра с показаниями, соответствующими различным мощностям усилителя корреспондента иллюстрирующими это правило.

Таким образом, применение усилителя мощностью 1 кВт вместо 100-ваттного вызовет увеличение сигнала на приемнике вашего корреспондента примерно на 10 дБ (1.5 балла по S-метру), что, безусловно, является весьма заметным событием для оператора, но становится ещё более заметным, когда понимаешь, что платить за это удовольствие приходится около 1500 $. Именно столько стоит киловаттный усилитель невысокого качества. Покупка усилителя мощностью 1,5 кВт (всего на 500 Вт мощнее!) обойдётся уже в сумму около 2500 $ (примеры приведены ниже), а на S-метре вы увидите увеличение показаний на 0.5 балла. Здесь речь идёт о средней стоимости промышленных KB усилителей для любительских целей, исключая поделки отечественных кулибиных и устройства Министерства обороны.

Интересный вывод: в этом случае разница между 5-6 и 5-8 будет стоить около 2500 $. Однако затраты радиолюбителей, выбравших именно этот путь для улучшения своих достижений, не ограничиваются затратами на усилитель. Например: в случаях, когда усилитель не имеет выходного перестраиваемого контура, необходимо использовать антенный тюнер. Стоимость выпускающихся промышленностью тюнеров, рассчитанных на мощность 300 Вт, составляет в среднем 500 $. Ну и, конечно, не стоит забывать о плате за электроэнергию. Усилитель, выходная мощность которого составляет 500 Вт, потребляет примерно 1000 Вт из сети. Такая пропорция сохраняется и при других мощностях. Например, любимая многими ГУ-78 при 4 кВт в антенне потребляет из сети уже около 8 кВт. А промышленные широкополосные передатчики типа “БРИГ” (1кВт), “ПЛАМЯ” (10 кВт) и подобные им, работают с КПД всего около 30% - дальше считайте сами. При подсчётах учтите также и то, что эта аппаратура является источником помех другим работающим электронным устройствам. В первую очередь - конечно, телевидению. Усилители мощности создают много, мягко говоря, неудобств для любителей бесконечных телесериалов, с которыми хочешь не хочешь - приходится считаться. С многими проблемами, связанными с помехами телевидению помогут справиться разного рода фильтры. Они тоже стоят денег. (Совсем недавно выпуск некоторых их них освоен саратовской компанией REMO. Дешевле и лучше, чем импортные...)

Но, если станция находится в сельской местности, то нехватка электроэнергии вообще не даст сделать даже длинного “а-а-а-а-а-лё, раз, два, три...”. В деревянных сельских домах и домах “новых русских” одна из важнейших проблем - пожаробезопасность. Огнетушители и качество проводки станут постоянной головной болью. В итоге набежит немалая сумма. Это только основные аспекты, связанные с использованием мощного усилителя.

А сейчас рассмотрим подробнее иную возможность улучшения качества связи: использование эффективной антенной системы. На что необходимо обратить внимание в этом случае:

Первое . Необходимо понимать, что: усилители усиливают только сигнал передатчика и, в отличие от антенн, ничего не делают для улучшения приёма.

Второе . Крайне важным свойством антенны является возможность уменьшать уровень мешающего сигнала за счет использования её направленных свойств. Вращая антенну, можно добиваться оптимального её направления, соответствующего наиболее качественному приёму сигнала, т.е. улучшать отношение сигнал/шум - важнейший параметр в радиосвязи.

Стоимость антенны, обеспечивающей аналогичный прирост уровня сигнала на передачу, будет на порядок меньше, чем стоимость мощного усилителя. Как уже говорилось, увеличение мощности выходного усилителя на 6 дБ (всего 1 балл на S-метре вашего корреспондента), т.е. в ЧЕТЫРЕ раза примерно со 100 Вт (мощность стандартного трансивера), стоит: QRO HF-1000 (600 Вт)-2690$, Ameritron AL-80 В (850 Вт РЕР)-1350$, Ameritron 811 В (600 Вт РЕР)-1050 $, Command Technologies HF-1250 (800 Вт)-3250$ (приведены цены московских компаний). Конкретно 400-ваттных усилителей при подготовке этого материала найти не удалось. Интересно, что тот же прирост (около 6 дБ) по отношению к столь популярному в народе “длинному проводу” в 84 метра имеет, например, обычная 4-х элементная антенна Яги или аналогичные квадраты. А применение более серьёзных антенн обеспечивает ещё большее усиление соответственно. Стоимость таких антенн отечественных производителей составляет примерно от 100 до 400$, в зависимости от диапазона и степени сложности собственно антенны. Мы приводим весьма усреднённые цены, но даже они красноречиво говорят сами за себя. Кроме того, необходимо иметь в виду, что антенна с горизонтальной поляризацией расположенная над землёй имеет усиление примерно на 5-6 дБ больше, нежели в свободном пространстве (точное значение зависит от параметров земли). Этот фактор необходимо учитывать при рассмотрении эффективности усилителей и антенн. Прирост мощности от 1 кВт до 4 кВт (снова всего 1 балл на S-метре!) обойдётся вам уже в 4-9 тыс. $: (QRO 3 KDX (2.8 кВт), Henry 3 k ULTRA (ЗкВт), HF-2500E (2.5 кВт)).

Визуальная иллюстрация этого приведена на рис.2.

На горизонтальной оси отложены значения усиления антенн, расположенных на высоте 22 метра над реальной землёй выраженные в дБи (подробно об усилении см. стр.4 каталога “БРИЗ Зима 2001”). Здесь же нанесены значения мощности сигнала, которую излучает антенна при условии, что выходная мощность передатчика (трансивера) составляет 100 Вт. При этом за начало координат принято именно это значение. Усиление и мощность нанесены на одну и ту же ось для того, чтобы можно было наглядно продемонстрировать разницу в цене усиления сигнала для усилителей и антенн. На вертикальную ось нанесена цена, которую вам придется заплатить за все то, что нанесено на горизонтальную. В виде графиков представлены данные для антенн диапазонов 7, 14, 21 и 28 МГц и стэка из двух антенн диапазона 14 МГц. Таким образом, графики показывают, какова сегодня средняя московская цена за усиление, получаемое теми или иными антеннами. Например, из рисунка видно, что антенну диапазона 14 МГц с усилением 16 дБи (5 элементов YAGI), можно приобрести за 750 $. Точками отмечены усилители мощности, которые можно приобрести сегодня в московских компаниях. При этом усилители находятся в более выгодном, по отношению к антеннам, положении, поскольку значения излучаемой в эфир мощности соответствуют работе усилителя на полуволновый диполь, расположенный на высоте 22 м. Возьмём, к примеру, усилитель ALPHA-87 А. При 100 ваттах на входе выходная мощность его составляет 1.5 кВт, что соответствует усилению примерно 12 дБ (15 раз) Если бы этот усилитель был подключен к изотропному излучателю, то мы бы нанесли его на наш рисунок на вертикальную ось, соответствующую значению 12 дБ. Однако в нашем случае все усилители работают на полуволновый диполь, поэтому нам необходимо добавить 2.15 дБ (разница в усилении между изотропным излучателем и диполем) и добавку примерно в 5 дБ, возникающую за счет влияния земли. Итого - почти 19 дБ, что и показано на рисунке. Если сигнал мощностью 100 Вт усилить на 19 дБ получится почти 8000 Вт. Такое же усиление в 19 дБи (т.е. относительно изотропного излучателя) имеет стэк всего из двух антенн. Показательно то, что цена за одно и то же усиление различается почти в 6 раз! Ещё более показательным выглядит стоимость одинакового прироста усиления для усилителей и для анетнн. Напомним: увеличение мощности на 3 дБ (например, с QRO-1000 до QRO-2500) будет стоить почти 2000 $, в то время как те же 3 дБ прироста для больших антенн диапазона 7 МГц обойдётся всего в 300-400 $.

На рисунке не показаны более мощные усилители, выпускаемые промышленно, поскольку их цена превышает значения, показанные на вертикальной оси и именно по этой причине доступны единицам отечественных радиолюбителей, так что их появление в России можно считать исключением.

При этом пусть вас не смущает то, что мы сравниваем однодиапазонные антенны с усилителями, работающими на всех диапазонах, ведь если у вас есть антенна только на один диапазон, то, покупая усилитель, вы “в нагрузку” получите возможность “усиливать” и все остальные диапазоны, работать на которых не сможете.

Из графика видно, какую сумму можно сэкономить, установив соответствующую антенну, при этом обеспечив тот же результат на S-метре вашего корреспондента.

Кроме всего прочего у вас есть возможность плавно улучшать показатели антенной системы, создавая стэки антенн. Грамотно объединив в стэк всего две антенны, можно улучшить приём сразу (в лучшем случае) в два раза, т.е. на 3 дБ. На практике, все получается куда более загадочнее: переключая взаимно антенны стэка и фазы их питания в различных комбинациях (сейчас это делают крохотные приборчики!) можно изменять диаграмму направленности в вертикальной плоскости всей антенной системы, выбирая наиболее подходящий в данный момент вариант. В нашей стране таких антенн на KB крайне мало, а УКВ-истов, использующих такие антенны было мало, и становится всё меньше и меньше. А вот в мире преимущества такой конструкции антенной системы известны давно. Чего стоит, например, стэк OH8OS, состоящий из 6 антенн по 6 элементов на диапазон 20 метров (три этажа по 2), на мачте высотой 60 метров и весом 1.5 тонны, которая имеет усиление около 25 дБи! Иными словами это равносильно подключению к 100-ваттному трансиверу 30 киловаттного усилителя!

Или антенна W5UN - главного "лунника" планеты. Его конструкция состоит из 32-х 17-ти элементных антенн. Ширина лепестка антенны в плоскости Е всего 3.7°, а усиление составляет 32 дБи (1585 раз по мощности)! Вращается такая конструкция двумя грузовиками, причем, для совершения полного оборота требуется примерно 7 минут!

Конструкции КС1ХХ, NCOP, W3LPL, W6KPC - фантастичные сооружения! Конечно, эти умопомрачительные конструкции антенн недоступны большинству обычных радиолюбителей, однако более простые конструкции, состоящие из 2-х этажей современных многодиапазонных антенн под силу многим. Важно учитывать, что при увеличении мощности выходного усилителя увеличение его цены происходит по геометрической прогрессии, а улучшение параметров антенн (даже учитывая стоимость набора мачта-редуктор) даётся значительно меньшими силами и затратами.

Таким образом модернизация антенной системы является наиболее оптимальным способом повышения эффективности всей радиосистемы, позволяющим не только существенно улучшить качество радиосвязи, но и минимизировать материальные затраты. Также улучшение параметров антенны позволяет избавиться от всех недостатков, описанных выше, сопутствующих применению мощного линейного высокочастотного усилителя сигнала.

На наш взгляд можно обозначить 5 условных категорий оснащения любительских станций, где переход в каждую последующую, при сохранении предыдущих достижений, позволяет ощутить реальный качественный скачок в результатах работы. Первая начальная определяется следующим набором: - 100 ватт и длинный провод или многодиапазонная штыревая антенна. Вторая : применение усилителя с выходной мощностью около 1 кВт. Третья : установка вращаемой направленной антенны. Четвёртая : увеличение выходной мощности до 3-4 кВт. И последняя, пятая : установка стэков антенн. На этом этапе можно отдохнуть, и до пенсии (или в течении её!) беззаботно работать в эфире. Успех вам обеспечен!

Окончательное решение по выбору способа повышения эффективности работы вашей станции всегда остаётся за вами.

Важная справка: на территории России в лицензиях первой (высшей!) категории на KB (исключая 160 м) разрешена выходная мощность 200 ватт!

В заключение статьи мы приводим полезную таблицу. Внимательно изучив её, можно сделать интересные выводы, как то: во сколько раз (примерно) ваш корреспондент увеличил выходную мощность своего РА, когда ваш S-метр показал разницу в 4 балла (4 балла - это 24 дБ или 250 раз по мощности...), хотя он уверяет вас, что у него ЗхГУ-50. Либо во сколько раз “усилится” ваш сигнал при подключении антенны с усилением 5 дБд вместо “длинного провода” (5 дБ=3.1 раза по мощности).

А. Дубинин (RZ3GE), А. Калашников (RW3AMC)

Изобретение относится к антеннам. Заявлена индуктивная антенна, сформированная из, по меньшей мере, двух пар сегментов, геометрически состыкованных друг с другом, каждая из которых содержит первый и второй параллельные проводники, изолированные друг от друга, при этом упомянутые пары относятся к первому типу, в котором проводники прерываются в своих средних точках, образуя два сегмента, причем первый (соответственно второй) проводник одного сегмента подключен ко второму (соответственно первому) проводнику другого сегмента пары, или ко второму типу, в котором первый проводник прерывается приблизительно в своей средней точке, образуя два сегмента, и второй проводник не прерывается. Техническим результатом является обеспечение большой индуктивной антенны, адаптированной к передачам в диапазоне частот от одного МГц до нескольких сотен МГц. 2 н. и 10 з.п. ф-лы, 11 ил.

Область техники, к которой относится изобретение

Настоящее изобретение в общем случае относится к антеннам и в частности к формированию высокочастотной индуктивной антенны.

Изобретение, в частности, применяется к антеннам, предназначенным для передач на радиочастотах порядка нескольких МГц, например для систем связи на основе бесконтактных чиповых карт, радиометок или электромагнитных приемоответчиков.

Уровень техники

На фиг.1 очень схематично показан пример индуктивной системы связи наподобие той, к которой, в порядке примера, применяется настоящее изобретение.

Такая система содержит считывающее устройство или базовую станцию 1, генерирующую электромагнитное поле, которое могут регистрировать один или несколько приемоответчиков 2, находящихся в этом поле. Такие приемоответчики 2 представляют собой, например, электронную метку 2", установленную на объекте в целях идентификации, бесконтактную смарт-карту 2” или, в более общем случае, любой электромагнитный приемоответчик (обозначенный блоком 2 на фиг.1).

На стороне считывающего устройства 1 последовательный резонансный контур сформирован из резистора r, конденсатора C1 и индуктивного элемента L1 или антенны. Этот контур возбуждается высокочастотным генератором 12 (ВЧ), управляемым (соединение 14) другими схемами, которые не показаны, базовой станции 1. Высокочастотная несущая, в общем случае, модулируется (по амплитуде и/или по фазе) для передачи данных на приемоответчик.

На стороне приемоответчика 2 резонансный контур, в общем случае параллельный, содержит индуктивный элемент или антенну L2, соединенную параллельно с конденсатором C2 и с нагрузкой R, представляющей электронные схемы 22 приемоответчика 2. Этот резонансный контур, находясь в поле считывающего устройства, регистрирует высокочастотный сигнал, передаваемый базовой станцией. В случае бесконтактной карты такие схемы, обозначенные блоком 22, содержащие одну или несколько микросхем, подключены к антенне L2, в общем случае поддерживаемой опорой карты. В случае электронной метки 2" индуктивный элемент L2 сформирован из проводящей обмотки, подключенной к электронной микросхеме 22.

Хотя символическое представление в форме последовательного резонансного контура на стороне базовой станции и параллельного резонансного контура на стороне приемоответчика является обычным, на практике можно найти последовательные резонансные контуры на стороне приемоответчика и параллельные резонансные контуры на стороне базовой станции.

Резонансные контуры считывающего устройства и приемоответчика, в общем случае, настроены на одну и ту же резонансную частоту ω (L1.C1.ω 2 =L2.C2.ω 2 =1).

Приемоответчики, в общем случае, не имеют автономных источников питания и извлекают мощность, необходимую для их работы, из магнитного поля, генерируемого базовой станцией 1.

Согласно другому примеру применения базовая станция используется для зарядки батареи или другого элемента накопления энергии приемоответчика. В этом случае высокочастотное поле, излучаемое базовой станцией, не нужно модулировать для передачи данных.

В индуктивной антенне проводящая цепь чаще всего является замкнутой цепью, проводящей ток, предназначенный для генерации радиочастотного магнитного поля. Замкнутая проводящая цепь получает питание от радиочастотного генератора 12.

Когда размер антенны становится значительным относительно длины волны, циркуляция тока, предназначенного для генерации магнитного поля по проводнику, затрудняется. Амплитуда и фаза тока испытывают сильные изменения вдоль цепи, из-за чего антенна больше не может действовать в индуктивной петле. Также часто бывает желательно иметь на стороне базовой станции антенну большого размера по сравнению с размером антенны приемоответчика. На самом деле, приемоответчики, в общем случае, движутся (поддерживаемые пользователем), когда представляются базовой станции, и желательно, чтобы они могли регистрировать поле даже в движении. В других случаях желательно, чтобы размер области, где возможна связь с приемоответчиком, был значительным. С другой стороны, полезно использовать большую индуктивную петлю для обеспечения большой дальности связи.

Чем длиннее проводящая цепь индуктивной антенны, тем больше циркуляция тока вдоль цепи отличается от желаемой. Таким образом, существует значительное изменение амплитуды и фазы тока вдоль цепи, которое изменяет и нарушает пространственное распределение генерируемого магнитного поля. Также существует увеличение электрических потенциалов между разными участками проводящей цепи, из-за чего поведение антенны становится чувствительным к присутствию диэлектрических материалов в своем ближайшем окружении.

Таким образом, длина индуктивной петли традиционно ограничена.

Ранее было предложено делить проводящую петлю на элементы, по отдельности, имеющие одинаковую длину, и повторно соединять эти элементы с конденсаторами для обеспечения возможности использовать большую петлю. Такое решение описано, например, в патенте US 5258766.

Ранее было предложено использовать экранированные индуктивные петли с прерыванием экранирования и инверсией проводника. Такие петли, в общем случае, называются "петлями Мебиуса". Такие структуры описаны, например, в статье Дункана (P. H. Duncan) "Analysis of the Moebius Loop Magnetic Field Sensor", опубликованной в IEEE Transaction on Electromagnetic Compatibility, май 1974. Однако такие структуры все же имеют ограниченную длину.

Таким образом, имеется необходимость в формировании большой индуктивной антенны.

Раскрытие изобретения

Задачей варианта осуществления настоящего изобретения является обеспечение индуктивной антенны, позволяющей полностью или частично преодолеть недостатки традиционных антенн.

Другой задачей варианта осуществления настоящего изобретения является обеспечение антенны, которая особенно хорошо адаптирована к передачам в диапазоне частот от одного МГц до нескольких сотен МГц.

Еще одной задачей варианта осуществления настоящего изобретения является обеспечение большой индуктивной антенны (вписывающейся в площадь поверхности, по меньшей мере в десять раз большую) по сравнению с антеннами приемоответчиков, с которыми ей предстоит совместно работать.

Еще одной задачей варианта осуществления настоящего изобретения является обеспечение антенной структуры, совместимой с различными компоновками.

Для решения всех или некоторых из этих и других задач настоящее изобретение предусматривает индуктивную антенну, сформированную из по меньшей мере двух пар геометрически состыкованных секций, каждая из которых содержит первый и второй параллельные проводящие элементы, изолированные друг от друга, причем каждая пара содержит на каждом конце один вывод электрического соединения своего первого проводящего элемента с проводящим элементом соседней пары, в которой упомянутые пары могут относиться:

к первому типу, где проводящие элементы прерываются приблизительно посередине, образуя две секции, причем первый, соответственно второй, проводящий элемент секции подключен ко второму, соответственно первому, проводящему элементу другой секции пары; или

ко второму типу, где первый проводящий элемент прерывается приблизительно посередине, образуя две секции, и второй проводящий элемент не прерывается.

Согласно варианту осуществления настоящего изобретения проводящие секции являются продольно-линейными, причем антенна образует петлю, имеющую пространственную геометрию любого типа.

Согласно варианту осуществления настоящего изобретения, соответствующие длины проводящих элементов выбираются согласно резонансной частоте антенны.

Согласно варианту осуществления настоящего изобретения соответствующие длины проводящих элементов выбираются согласно погонной емкости между первым и вторым проводящими элементами.

Согласно варианту осуществления настоящего изобретения по меньшей мере один емкостной элемент соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

Согласно варианту осуществления настоящего изобретения по меньшей мере один резистивный элемент соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

Согласно варианту осуществления настоящего изобретения каждая секция является секцией коаксиального кабеля.

Согласно варианту осуществления настоящего изобретения секции сформированы из витых проводящих элементов.

Настоящее изобретение также предусматривает систему для генерации высокочастотного поля, содержащую:

индуктивную антенну; и

Согласно варианту осуществления настоящего изобретения, упомянутая схема возбуждения содержит высокочастотный трансформатор, вторичная обмотка которого располагается между первыми проводящими элементами двух соседних пар антенны.

Краткое описание чертежей

Вышеописанные и другие задачи, признаки и преимущества настоящего изобретения будут подробно рассмотрены в нижеследующем неограничительном описании конкретных вариантов осуществления вкупе с прилагаемыми чертежами, на которых:

на фиг.1, описанной ранее, схематично показан в форме блоков пример радиочастотной системы связи, к которой применяется настоящее изобретение;

фиг.2 - упрощенное представление варианта осуществления индуктивной антенны согласно изобретению;

фиг.3 демонстрирует вариант осуществления пары секций первого типа антенны, показанной на фиг.2;

фиг.4 - упрощенное представление другого варианта осуществления индуктивной антенны согласно изобретению;

фиг.5 демонстрирует электрическую схему варианта осуществления первого типа пары секций антенны;

фиг.5A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.5;

фиг.6 демонстрирует электрическую схему варианта осуществления второго типа пары секций антенны;

фиг.6A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.6;

фиг.7 демонстрирует вариант осуществления индуктивной антенны и схем возбуждения и настройки;

фиг.8A и 8B демонстрируют два других варианта осуществления пары секций первого типа; и

фиг.9 демонстрирует другой вариант осуществления пары секций второго типа.

Осуществление изобретения

Одинаковые элементы обозначены одинаковыми ссылочными позициями на разных чертежах, выполненных с нарушением масштаба. Для наглядности показаны и будут описаны только элементы, полезные для понимания настоящего изобретения. В частности, схемы возбуждения индуктивной антенны не описаны подробно, причем изобретение совместимо с сигналами возбуждения, используемыми в настоящее время для этого типа антенны. Кроме того, приемоответчики, для которых предназначены антенны генерации поля, подлежащие описанию, также не описаны подробно, причем изобретение совместимо с различными современными приемоответчиками, бесконтактными картами, радиометками и т.д.

На фиг.2 показан упрощенный вид антенны согласно варианту осуществления настоящего изобретения.

В этом варианте осуществления предусмотрена стыковка нескольких секций 32 и 34 коаксиального кабеля. Эти секции собраны в пары 3, в каждой из которых две секции 32 и 34 соединены, образуя соединение мебиусова типа, то есть жила 324 первой секции подключена к оплетке 342 второй секции в паре, а оплетка 322 подключена к жиле 344 этой второй секции.

В предпочтительном примере, представленном на фиг.2, стыкуются четыре пары 3 секций. Электрическое соединение 4 между двумя соседними парами обеспечивается только одним единственным из проводящих элементов. В примере, представленном на фиг.2, соединение 4 между двумя соседними парами обеспечивается соответствующими оплетками противоположных секций двух пар. Другой проводящий элемент не подключен, то есть в примере, представленном на фиг.2, жилы двух соседних пар не соединены.

Кажется, проще делать однородный выбор для всех секций, чтобы все первые проводники соответствовали либо оплетке, либо жиле всех секций. В этом контексте проводящий элемент одного типа, оплетка или жила, будет использоваться для соединения пар всей антенны. Оплетка является предпочтительной, поскольку ее выбор обеспечивает лучшее электрическое экранирование. Как вариант, можно предложить обеспечивать соединения 4 за счет соответствующих жил противоположных пар. Однако сохраняется возможность делать разный выбор назначения первого проводника и второго проводника между первой секцией и второй секцией одной и той же пары, например, выбирать оплетку в качестве первого проводника для первой секции и жилу в качестве первого проводника для второй секции. Таким образом, согласно другому варианту можно предложить обеспечивать соединения 4 между двумя соседними парами от жилы к оплетке или наоборот.

На фиг.3 показано упрощенное представление пары 3 двух секций 32 и 34 антенны, показанной на фиг.2, соответствующих первому типу пары секций. На уровне центрального соединения 36 проводящая жила 324 секции 32 подключена к оплетке (или экрану) 342 секции 34, и оплетка 322 секции 32 подключена к жиле 344 секции 34.

На фиг.4 показано упрощенное представление другого варианта осуществления антенны.

Две пары 3 секций 32 и 34 первого типа (с перекрестным центральным соединением - фиг.3) попеременно подключаются к двум парам 5 секций 52 и 54 коаксиального кабеля, причем центральное соединение 56 секций различается. В этих парах 5 второго типа секции 52 и 54 соединены своими соответствующими жилами 524 и 544, тогда как их оплетки 522 и 542 не соединены. Стыковые электрические соединения пар тем не менее обеспечиваются посредством взаимного соединения 4 оплеток при несоединенных жилах.

Распределение и количество пар двух типов может изменяться. Однако пары первого типа более предпочтительны.

Фиг.5 демонстрирует электрическую схему первого типа пары 3 секций.

Фиг.5A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.5.

Пара 3 секций 32 и 34 содержит два вывода 42 и 44 соединения с соседними парами. Вывод 42 подключен к первому проводящему элементу 322 секции 32, который, другим своим концом, подключен через перекрестное взаимное соединение 36 ко второму проводящему элементу 344 секции 34, имеющей неподключенный свободный конец 3441 (на стороне вывода 44). Второй проводящий элемент 324 секции 32 имеет свободный конец 3241 (на стороне вывода 42) и другой свой конец, подключенный соединением 36 к первой проводящей секции 342 секции 34, другой конец которой подключен к выводу 44.

Эквивалентная электрическая схема такой пары показана на фиг.5A и предусматривает последовательное электрическое соединение индуктивности величиной L0 и конденсатора величиной C0, где L0 обозначает индуктивность, соответствующую совокупности секций 322 и 342 проводника, рассматриваемой как один и тот же проводник для вычисления этой величины, и где C0 обозначает все внутренние емкости, между жилой и оплеткой в случае коаксиального кабеля - между двумя проводниками (между проводниками 322 и 324 и между проводниками 342 и 344) в случае других вариантов осуществления. Согласно вышеприведенному описанию, взаимные индуктивности между совокупностью секций 322 и 342 (рассматриваемой как проводник для вычисления) и совокупностями секций, эквивалентных секциям 322 и 342 других пар (также рассматриваемыми как проводник для вычисления), пренебрежимо малы. Вследствие формирования в виде петель разные пары достаточно удалены друг от друга, что позволяет пренебрегать взаимными индуктивностями по сравнению со значением L0, например, рассмотренным выше.

Пренебрегая омическими потерями в проводниках и диэлектрическими потерями между проводниками, импеданс пары секций в этом варианте осуществления можно выразить в виде Z=jL0ω+1/jC0ω.

Фиг.6 демонстрирует электрическую схему второго типа пары 5 секций.

Фиг.6A демонстрирует эквивалентную электрическую схему пары, показанной на фиг.6.

В паре 5 секций 52 и 54 первый проводник 522 первой секции 52 подключен к первому выводу 42 доступа и ее другой конец 5222 остается отключенным (несоединенным). Первый проводящий элемент 542 второй секции 54 остается на стороне секции 52 отключенным (конец 5422) и на другом своем конце подключен к выводу 44 доступа к паре 5. Второй проводник 524 первой секции 52 подключен взаимным соединением 56 ко второму проводнику 544 второй секции 54. Концы 5241 и 5441 секций 524 и 544 остаются отключенными.

С электрической точки зрения и согласно фиг.6A, предполагая, что проводники пар 3 и 5 имеют одинаковую длину, пара 5 предусматривает последовательное соединение индуктивного элемента номиналом L0 с емкостным элементом номиналом C0/4, где L0 обозначает индуктивность, соответствующую совокупности секций 522 и 542 проводника, и C0 обозначает все внутренние емкости (между проводниками 522 и 524 и между проводниками 542 и 544).

Импеданс пары секций в этом варианте осуществления можно выразить в виде Z=jL0ω+1/j(C0/4)ω.

С электрической точки зрения две пары последовательно соединенных секций 3 эквивалентны одной паре секций 5 удвоенной длины.

Длины будут адаптированы к рабочей частоте антенны, благодаря чему каждая пара секций соблюдает настройку, то есть LCω 2 =1. Можно видеть, что согласно распределению типов пар между парами 3 и 5 длины проводящих элементов и значение погонной емкости между двумя проводниками секции могут изменяться. Значения емкостных элементов уже не являются пренебрежимо малыми, и антенна менее чувствительна к возмущениям своей среды.

Формирование антенны с несколькими парами секций наподобие показанных на фиг.5 и 6 позволяет разделять электрическую цепь и не позволяет использовать слишком длинные индуктивные элементы, где ток, текущий по индуктивной замкнутой цепи, не может иметь однородные амплитуду и фазу вдоль всей цепи. На самом деле соединение пар между собой эквивалентно последовательному соединению нескольких резонансных контуров с одинаковой резонансной частотой. В этом случае снимается ограничение на длину индуктивных антенн.

Разные пары секций не обязательно имеют одинаковые длины, обеспеченные для каждой пары, для соблюдения, возможно, с размещением между ними конденсатора, подключенного между двумя проводниками на уровне перехода между парами, резонансного соотношения.

Фиг.7 демонстрирует вариант осуществления индуктивной антенны и схем возбуждения и настройки. Здесь антенна содержит три пары 3 первого типа.

Схема 18 возбуждения представляет собой высокочастотный трансформатор, первичная обмотка 182 которого принимает сигнал возбуждения высокочастотного генератора 12 (фиг.1) и в котором два вывода вторичной обмотки 184 подключены к выводам 42 и 44 двух соседних пар вместо их взаимного соединения 4. Таким образом, вторичная обмотка образует это соединение между двумя парами. Трансформатор предпочтительно выбирать таким образом, чтобы брать обратно к стороне вторичной обмотки индуктивность, которая пренебрежимо мала на рабочей частоте относительно значения L0, что, например, имеет место, когда коэффициент связи близок к 1.

Кроме того, схема 16 настройки соединяет свободные концы 3241 и 3441 проводников 324 и 344 этих двух пар, которые, таким образом, соединяются. Схема 16 в примере, представленном на фиг.7, является резистивной (резистор R4) и емкостной (конденсатор C4) цепью. Функция конденсатора C4 состоит в регулировке резонансной частоты антенны. Функция резистора R4 состоит в настройке добротности Q антенны на выбранное значение, например, для регулировки ширины полосы.

Конденсаторы можно размещать между разными парами, подключать между проводящими элементами одной и той же секции, между проводящими элементами, оставшимися неподключенными (в данном случае жилами секций коаксиального кабеля), и точкой 42 или 44 соединения (в данном случае оплетками секций коаксиального кабеля), или между проводниками, оставшимися неподключенными, соединенных между собой секций каждой пары, для снижения резонансной частоты.

Длину проводящего элемента 324 или 344, оставшегося неподключенным (в данном случае жил), также можно уменьшать для снижения полной емкости соответствующей секции для увеличения резонансной частоты.

Аналогично, резистивные элементы можно подключать между свободными концами проводящих элементов между двумя парами для регулировки и снижения добротности сформированной таким образом антенны. Резистивные элементы также можно вставлять вместо взаимного соединения 4 между двумя парами для снижения и регулировки добротности.

Разным секциям не обязательно придавать прямолинейную форму. Согласно фиг.7, секции могут располагаться в различных компоновках. Таким образом, замкнутая антенна изобретения может быть выполнена в форме рамки, образовывать петли, иметь округлую форму, иметь формы в трех пространственных измерениях и т.д.

В вышеописанных вариантах осуществления схемы регулировки были проиллюстрированы с соединением между парами. Следует отметить, что как вариант и в случае пар второго типа (5) такие схемы можно вставлять в сами пары секций. В этом случае подключаемый конденсатор соединяет два несоединенных между собой свободных конца элементов 522 и 542.

Резистивные элементы также можно вставлять вместо соединений между проводниками двух секций одной и той же пары (первого типа 3 и второго типа 5) на переходе 36 и 56 для снижения добротности.

На фиг.8A, 8B и 9 показаны пары проводящих секций согласно другому варианту осуществления настоящего изобретения. Этот вариант осуществления иллюстрирует, что пары проводящих секций могут быть сформированы посредством витых проводников, а не посредством коаксиальных секций.

На фиг.8A и 8B показаны два варианта осуществления пары 3 секций первого типа.

Согласно фиг.8A, две секции витого провода соединены между собой аналогично тому, что описано в связи с секциями коаксиального кабеля.

Фиг.8B демонстрирует другой вариант осуществления перекрестного взаимного соединения пары секций, где перекрещивание фактически достигается переворачиванием проводника, к которому присоединен выходной вывод (например, 44), относительно проводника, к которому присоединен входной вывод (например, 42), и проводящие секции не прерываются внутри пары.

Фиг.9 демонстрирует вариант осуществления пары 5 секций 52 и 54 второго типа, сформированных из витых проводников.

Согласно еще одному варианту осуществления, который не показан, пары секций формируются из невитых проводников, экранированных или нет.

Согласно еще одному варианту осуществления, который не показан, пары секций формируются дорожками, нанесенными на изолирующую подложку.

Антенна, например, определенная выше, также может быть определена как содержащая по меньшей мере две геометрически состыкованные продольно-линейные узловые сборки (3, 5, 3"), каждая из которых содержит согласно своей длине первый и второй параллельные проводящие элементы, изолированные друг от друга, и на каждом конце в соединении с первым проводящим элементом один вывод электрического соединения с соседней узловой сборкой и второй проводник электрически не подключен, где все или часть из узловых сборок относятся:

к первому типу, где каждый из первого и второго проводников прерывается приблизительно посередине и повторно подключается к другому проводнику узловой сборки; или

ко второму типу, где первый проводник прерывается приблизительно посередине и второй проводник не прерывается.

Согласно такому определению проводящий элемент в случае перекрестного соединения (фиг.3, 5 и 8A) сформирован из двух участков, электрически соединенных последовательно, проводящих проводов (жилы или оплетки), отличающихся от используемого кабеля таким образом, что каждый вывод соединения подключен к проводнику той же природы (оплетке или жиле) узловой сборки и при этом электрически не подключен к другому выводу.

Согласно конкретному варианту осуществления секции можно формировать, разрезая обычные коаксиальные линии. В настоящее время существуют некоторые с характеристическими импедансами 50, 75 и 93 Ом, имеющие соответствующие значения погонной емкости 100 пФ/м, 60 пФ/м и 45 пФ/м. Например, в случае перекрестного соединения для 50-омного коаксиального кабеля можно получить индуктивности L0 порядка одного мкГн.

Согласно другому конкретному варианту осуществления, предусматривающему использование защищенных проводников (витых или нет), кабели имеют погонную емкость между проводниками приблизительно в пределах от 30 до 40 пФ/м. Для таких кабелей можно получить, например, индуктивности L0, имеющие значение в пределах приблизительно между 2 и 3 мкГн.

Фиг.10 является упрощенным представлением антенны согласно другому варианту осуществления. Как и в других вариантах осуществления, антенна содержит по меньшей мере две пары (первого типа 3, фиг.5, или второго типа 5, фиг.6) секций, каждая из которых сформирована из параллельных проводящих элементов, изолированных друг от друга. В примере, представленном на фиг.10, предполагается, что это пары секций коаксиального кабеля. Эта структура завершается дополнительной полупарой, сформированной из двух проводящих элементов первого типа 32, 34 или второго типа 52, 54. Вместо установки на конце антенны полупару можно устанавливать между двумя парами. Присутствие дополнительной полупары можно использовать для регулировки длины антенны.

На фиг.11 показано упрощенное представление варианта, согласно которому два сегмента 61 и 63 коаксиального кабеля механически размещены рядом параллельно друг другу и их оплетки электрически соединены друг с другом по меньшей мере на двух концах для формирования единого первого проводящего элемента (соединение 67). Жилы электрически соединены для формирования единого второго проводящего элемента (соединение 65 на одном из концов). Каждый элемент наподобие проиллюстрированного на фиг.11 образует секцию 32, 34, 52 или 54 антенной структуры. Преимущество секции, образуемой сборкой сегментов, показанных на фиг.11, состоит в увеличении погонной емкости секции между первым проводящим элементом и вторым проводящим элементом. Это позволяет уменьшить необходимую длину пары для одинаковой резонансной частоты и, таким образом, обеспечивает дополнительную гибкость в отношении геометрии антенны.

При формировании антенн из коаксиальных секций дополнительное преимущество обусловлено емкостью между экраном и проводящей жилой для формирования индуктивных и емкостных секций, имеющих увеличенную емкость (что позволяет делать их более короткими для той же частоты), в отличие от проводного элемента.

Преимущество описанных вариантов осуществления состоит в том, что они позволяют формировать антенны больших размеров для применений к резонансным частотам более одного МГц (обычно между 10 и 100 МГц). Таким образом, антенны можно создавать на порталах, прилавках и т.д., обеспечивая при этом однородную циркуляцию тока вдоль петли для генерации желаемого поля.

Согласно конкретному варианту осуществления антенна, адаптированная к работе на частоте 13,56 МГц, может быть выполнена в форме прямоугольной рамки приблизительно 87 см на 75 см, сформированной из трех пар проводников (трижды две секции) первого типа в виде 50-омного коаксиального кабеля с погонной емкостью 100 пФ/м (диаметр оплетки 3,5 мм), распределенного в двух парах, имеющих L-образную конфигурацию с осевой длиной 1,07 м (с индуктивностью L0 приблизительно 1,22 мкГн или 1,21 мкГн, с учетом взаимной индуктивности), и одной паре, имеющей U-образную конфигурацию с осевой длиной 1,08 м (с индуктивностью L0 приблизительно 1,20 мкГн или 1,19 мкГн, с учетом взаимных индуктивностей). Резонансную частоту можно регулировать с помощью переменного конденсатора.

Были описаны различные варианты осуществления, и специалисты в данной области техники могут предложить различные изменения и модификации. В частности, размеры, приданные проводящим секциям и емкостным элементам, зависят от применения, и их вычисление не выходит за пределы возможностей специалистов в данной области техники, основанные на функциональных указаниях, заданных выше, и желаемых резонансной частоте и размере антенны.

Формула изобретения

1. Индуктивная антенна, содержащая по меньшей мере две пары геометрически состыкованных секций (32, 34; 52, 54), каждая из которых содержит первый (322, 342; 522, 542) и второй (324, 344; 524, 544) параллельные проводящие элементы, изолированные друг от друга, причем каждая пара содержит на каждом конце один вывод электрического соединения (42, 44) своего первого проводящего элемента с проводящим элементом соседней пары, при этом упомянутые пары могут относиться:
к первому типу (3), где проводящие элементы прерываются посередине, образуя две секции, причем первый, соответственно второй, проводящий элемент секции подключен ко второму, соответственно первому, проводящему элементу другой секции пары, или
ко второму типу (5), где первый проводящий элемент (522, 542) прерывается посередине, образуя две секции, и второй проводящий элемент (524, 544) не прерывается.

2. Антенна по п.1, в которой проводящие секции являются продольно-линейными, причем антенна образует петлю, имеющую пространственную геометрию любого типа.

3. Антенна по любому из предыдущих пунктов, в которой соответствующие длины проводящих элементов (322, 324, 342, 344; 522, 524, 542, 544; 322", 324", 342", 344") выбираются согласно резонансной частоте антенны.

4. Антенна по п.1, в которой соответствующие длины проводящих элементов (322, 324, 342, 344; 522, 524, 542, 544; 322", 324", 342", 344") выбираются согласно погонной емкости между первым и вторым проводящими элементами.

5. Антенна по п.1, в которой по меньшей мере один емкостной элемент (C4) соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

6. Антенна по п.1, в которой по меньшей мере один резистивный элемент (R4) соединяет между собой вторые проводящие элементы соседних пар или первый и второй проводящие элементы одной и той же пары.

7. Антенна по п.1, в которой каждая секция (32, 34, 52, 54) является секцией коаксиального кабеля.

8. Антенна по п.1, в которой каждая секция сформирована из двух сегментов (61, 63) коаксиального кабеля.

9. Антенна по п.1, в которой секции (32, 34, 52, 54, 32", 34") сформированы из витых проводящих элементов.

10. Антенна по п.1, дополнительно содержащая полупару, сформированную из секции двух проводящих элементов, подключенных к по меньшей мере одной паре.

11. Система для генерации высокочастотного поля, содержащая
индуктивную антенну по любому из предыдущих пунктов и
схему для возбуждения антенны высокочастотным сигналом.

12. Система по п.11, в которой упомянутая схема возбуждения содержит высокочастотный трансформатор (18), вторичная обмотка которого располагается между первыми проводящими элементами двух соседних пар антенны.